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A complete description is sought for the two-dimensional laminar flow response of an 
incompressible boundary layer encountering a hump on an otherwise smooth boun- 
dary. Given that the typical Reynolds number Re (based on the development length L* 
of the boundary layer) is large, the flow characteristics depend on only two para- 
meters, the non-dimensional length and height scales 1, h of the obstacle. For short 
humps of length less than the familiar O(Re-3) triple-deck size the critical height scale, 
which produces a nonlinear interaction and hence the prospect of separation, is of 
order Re-41). For long humps whose length is greater than the triple-deck size the 
corresponding critical height scale is much bigger, of order 1%. Height scales below 
critical produce only a weak flow response while height scales above critical force 
relatively large-scale separated motions to occur. In  the paper the flow structures and 
typical solutions produced by two representative cases, a short obstacle of length 
comparable with the oncoming boundary-layer thickness and a long obstacle of 
height comparable with the boundary-layer thickness, are mainly considered. The 
former case is controlled by the unknown pressure force induced locally in the flow 
near the hump and by two length scales, that of the hump itself and that of the longer 
triple deck. The latter case is governed mainly by the inviscid externally produced 
pressure force. Alternatively, however, all the dominant flow properties in both cases 
can be obtained as special or limiting solutions of the triple-deck problem. Com- 
parisons between the cases studied are also presented. 

1. Introduction 
I n  the theory of the flow past a hump on an otherwise smooth surface there are 

three independent parameters affecting the motion, even if we concentrate our atten- 
tion on the steady two-dimensional laminar situation for an incompressible fluid and 
for a hump that is not too irregular. These three parameters are the Reynolds number 
and the relative length and thickness scales of the hump. However, for high-Reynolds- 
number flow theory the present belief is that the character of the motion for any length 
and height scale hinges about just, one principal flow feature, the onset of separation. 
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Accordingly, now that so much more is known (see, for example, the reviews by 
Stewartson 1974, Messiter 1979 and Smith 1979c) about the effects of nonlinearity, 
and especially of the separation phenomenon, on plane laminar boundary-layer 
motion it is desirable to attempt a general description for the fundamental flow prob- 
lem of planar high-Reynolds-number flow past a hump on an otherwise smooth surface. 
It is supposed that between the effective start and end of the hump its profile is smooth 
and strictly monotonic on either side of the maximum and has only a single length 
scale and a single height scale. These two scales rather than the precise shape of the 
hump then have the overriding influence on the flow response, 

There remain some outstanding controversies and uncertainties about the effects of 
scale on the flow of a laminar boundary layer over an isolated two-dimensional hump 
with small slope on a smooth surface, and in particular controversy about how analyses 
of humps of different scales match or do not match together. The problem was studied 
first by Hunt (1971) and Smith (1973). For certain short humps in particular the 
former adopted a local short-scale approach to study the flow response, whereas the 
latter suggested a more global long-scale treatment based on triple-deck theory. One 
of our intentions here is to settle the controversies by presenting a full and clearer 
account of the flow features produced by a short hump (although long humps will also 
be analysed: see below). In  doing this we will show that the two approaches are in 
agreement in fact and further that they must both be used, in conjunction, if a com- 
plete rational description of the flowfield is to be achieved. For if only the local 
approach is adopted it fails to cope with the dominant inviscid response of the boun- 
dary layer, although it does successfully describe the local viscous wall-layer motion; 
while application of the triple-deck approach is insufficient for describing all the 
higher-order effects of the hump, although it does yield the zeroth-order disturbance 
solution everywhere. Hence a combination of the two approaches is inevitably implied 
and proves to be apowerful technique for the understanding ofthe flow past short humps. 

The essential physical questions, which we attempt to answer in this paper, are: 
how do the following flow properties change as the Reynolds number (Re, based on 
the kinematic viscosity Y* and the development length L* of the boundary layer, 
which determines the boundary thickness 6") and the length and thickness (Z*, h*, 
where h* < O(Z*)) of the hump vary? - 

(i) Separation. [A phenomenon which occurs on surface-mounted humps of much 
lower slopes (h*/Z*) than on similar obstacles in free flows, and which can produce 
separated flow regions extending many obstacle heights downwind of surface humps.] 

(ii) The streamwise velocity over the hump. [Does it increase relative to the 
velocity at  the same height upwind, or decrease, and how far above the hump does 
the perturbation velocity field extend? In unbounded Couette flows and certain 
turbulence-modelled flows it increases but in boundary -layer flows over long humps it 
decreases: what is the explanation?] 

(iii) Changes in surface shear stress. [These are much greater than O(h*/Z*) and 
decrease downstream at quite different rates depending on Z*.] 

(iv) The downstream or wake velocity field. [What kind of humps produce 'wakes ' 
with maximum velocity defects concentrated in narrow surface layers as opposed to 
those whose wakes have the same order of velocity defect throughout the boundary 
layer? Are there always integrals which determine the magnitude of these deficits, a 
point on which Hunt (1971) and Smith (1973) disagreed? J 

*r 
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FIGURE I .  (a)  Definition sketch for the boundary-layer flow over a two-dimension& hump, 
showing the co-ordinate system, the length scales, the incident velocity profile and the main 
flow regions. The length scale L* is chosen so as to be of the same order aa the distance from 
the leading edge of the flat plate in the case of an oncoming Blasius boundary layer. (b )  The 
main flow characteristics produced by a hump of height scale h (=h*/L*) and length scale 
I (=E*/L*), and a sketch of the dependence of the critical height scale h = h ,  upon the length 
scale I of the hump. Also shown are the cases studied in $$2, 3 and the triple-deck case, along 
with the ranges of application of triple-deck theory and of the theories presented in the paper 
for short humps and for long humps. Smith & Daniels' (1981) work applies above the curve 
it = ho but below it = O(Re-Q). 
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The method of analysis used in this, as in other laminar and turbulence-modelled 
flow analyses over surface obstacles, is to divide the flow broadly into three regions 
(figure l ) ,  a lower region (of thickness 6; < S*) in which shear stresses balance accelera- 
tion and pressure gradients, a middle region with thickness of the order of S* and an 
upper region above the boundary layer. I n  both the latter regions the perturbations 
to the incident flow are governed by inviscid dynamics, the difference between the 
middle and upper regions being that the perturbations there are rotational and 
irrotational respectively. It is worth reminding those unfamiliar with the jargon that 
in a ‘triple-deck analysis’ the flow perturbations have a streamwise length scale L$ 
which is large compared with 6”. I n  fact the interactions (described later) between the 
regions show that L: = O(Re-i)  L* = O(Rei)S*. 

I n  the analysis presented here humps much shorter and longer than Lz are con- 
sidered. For example over the short hump the inviscid middle region has to be broken 
up into smaller zones where new inviscid properties can develop. An important result 
of the analysis is to show where and to what accuracy the triple-deck analysis applies 
to these problems (see figure 1 b )  and where additional analysis is required. 

A general analysis for the flow over humps must include a t  one extreme the flow 
over a short hump (Hunt 1971; Smith 1973) of low slope whose length is small com- 
pared with the boundary-layer thickness, but long enough to induce high-Reynolds- 
number flow perturbations and whose height is small compared with the viscous 
shear stress region on the surface; i.e. (v*/7*)4 < 1” < a*, h* << l*f(u*/~*)t,’where~*is 
the incident velocity gradient a t  the wall; or, in terms normalized on L* and Re, 
Re-$ < I < Re-*, h < IfRe-4, where I = 1*/L* and h = h*/L* are the relative length 
and thickness scales of the hump. At the intermediate or triple-deck scale it must 
include a case analysed by Smith (1973), namely where 1 N Re-# and h - 1tRe-*. 
Smith argued that an analysis for this case also effectively includes a whole range of 
short to very long humps, Re-2 < 1 < O( 1) - an argument which we find to be correct 
($4) in fact, subject to restrictions (e.g. those mentioned in our second paragraph) 
when higher-order terms are of especial interest. Hunt’s (1971) analysis for short 
humps has similar restrictions on its validity (figure 1 b ) .  It is because of such restric- 
tions that an analysis extending those of Hunt (1971) and Smith (1973) is necessary. 
Finally, at the other extreme, for certain very long humps Smith (1973) showed that 
only a simple though nonlinear displacement effect on the oncoming boundary-layer 
motion is produced. That result cannot be generally true for all long humps and so 
again further investigation is necessary to extend the range of understanding of the 
different flow structures produced by humps of various length and thickness scales. 

To handle all the many possible cases and deduce the length scales for such a gen- 
eral analysis we suppose that the relative length (‘horizontal’) scale I, <0(1), is 
given and consider the effects of increasing the relative height (‘vertical’) scale h 
of the hump. Then an order-of-magnitude argument soon establishes that the 
first crucial height reached is h = h, = O(lfRe-:), since that stage produces a viscous 
nonlinear response and hence the prospect of separation in the local flow field. For if 
the height of the viscous wall layer expected near the hump is a fraction 6, say, of the 
classical oncoming boundary-layer thickness O(Re-4) then the horizontal velocity 
component u is of order 6 there according to the boundary-layer profile. Hence the 
inertial and viscous operators are of the orders 61-1 ( N u a/ax) and P2 ( Re-I P/ay2) 
respectively and become comparable when 6 N 14. So a hump of height 1)Re-* forces 
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the analysis of the wall-layer response to be both nonlinear and viscous. Here x ,  y are 
the horizontal and vertical co-ordinates non-dimensionalized with respect to L* 
while u is measured relative to  the local free-stream speed lJ2 just outside the on- 
coming boundary layer. For vertical scales h < h, therefore the flow response is purely 
a linear one; for h N h, it is nonlinear and local separation is a possibility; and for 
h 9 h, large-scale breakaway separation (Smith 1977, 1979a) and eddy formation, 
perhaps upstream as well as downstream of the hump, is a distinct prospect. Such a 
conclusion seems to be warranted for all the cases where 1 6 O(Re-8) but for 1 & O(Re-3) 
an extra factor comes into play. 

For when 1 & O(Re-8) the viscous nonlinear response arising for h N 1sRe-4 merely 
involves a displacement of the entire boundary layer as the whole flow is able simply 
to lift itself over the hump slowly enough to prevent the occurrence of significant 
local pressure gradients (as in Smith 1973). Therefore the vertical scale h can be 
increased safely beyond h N &Re-* for such long humps without separation being 
encountered. The pertinent next question then for those cases where 1 & Re-3 is how 
far must h be increased beyond h - IsRe-4 before separation is encountered? Again 
the answer stems from an order-of-magnitude argument, although the structure 
implied is quite different from before. The potential flow outside the boundary layer 
now responds to  the presence of the hump by inducing a pressure variation p of order 
h/l, i.e. proportional to  the hump’s typical slope. Here p is non-dimensionalized with 
respect to p* Uz2,  where p* is the fluid density. In  classical boundary-layer fashion 
that pressure distribution drives the viscous flow near the hump surface in the thin 
wall layer which as before has thickness of order 14Re-* and velocities u of order 
6 N If. Hence the flow response there is nonlinear and so may provoke separation if 
the inertial and induced pressure forces, uaulax ( - a21k1) and ap/ax ( N hlk2), are 
comparable, i.e. if h = O(Z*). This suggests the crucial height is h = h, N 1* whenever 
1 9 R e d .  

The intermediate category 1 = O(Re-s),  the longest one for which the height 
h = h, = O(1fRe-4) is still enough to produce separation, therefore defines the shallow- 
est form of hump for which separation can occur and it is of course the triple-deck 
case. The two different structural forms associated above with ( a )  shorter humps, 
where h, = O(ZfRe-3) and the pressure response is locally produced, and (b)  longer 
humps, where h, = O(18) and the pressure response comes instead from the outer 
potential flow, amalgamate for the triple-deck length of hump and so lead to the 
pressure-displacement relation of triple-deck theory. At fist sight the triple-deck 
category therefore seems a very particular one to consider; however it turns out to 
include the dominant (if not all the) flow features for all the other categories men- 
tioned in ( a )  and ( b )  above. A triple-deck study therefore provides the unifying theme 
between the otherwise disparate flow features arising for shorter and longer humps. 
It also includes as limiting cases the major flow features for humps so high that 
h 9 h, where large-scale separation can occur. 

The subdivision of our discussion above, into the three categories of flow past (a )  
shorter humps, ( b )  longer humps and (c) the intermediate triple-deck size, forms the 
basis for the present study. Thus first in $2  below the category ( a )  is examined. To 
fix matters there we choose the particular horizontal scale 1 of the hump to be com- 
parable with the thickness O(Re-*) of the oncoming boundary layer, although similar 
flow properties result whenever Re-2 < 1 < Re-8 (with h < O(1iRe-4); figure 1 b) .  The 



128 F .  T .  Smith, P. W. M .  Brighton, P. S. Jackson and J .  C .  R. Hunt 

solution subdivides then into five main regions of flow, three on the long horizontal 
scale associated with the triple-deck ($2.1) and two on the short horizontal scale 
($2.2)  of the hump itself as suggested by Smith (1973) and Hunt (1971) respectively. 
The various local and wake properties of the short hump case (a )  are discussed in 
$92.3, 2.4. The second category (b)  is then examined in 9 3  and, again to fix matters, a 
specific horizontal scale for the hump is studied, namely 1 - Re-1'6 since that produces 
the interesting case of a longer hump whose height is comparable with the oncoming 
boundary-layer thickness. Similar flow properties apply whenever Re-8 < 1 < O(l ) ,  
with h N 25, however. Comparisons are made, also in $3, between the flow charac- 
teristics holding for the categories ( a )  and ( b ) .  Following that, $4 presents the alterna- 
tive viewpoint of triple-deck theory. Starting from the nonlinear triple-deck problem 
associated with (c) above the analysis shows that the dominant flow features every- 
where for both the categories (a ) ,  (b)  of $92,3 can be obtained and regarded as limiting 
or special cases of category (c). In  anticipation of this last result figure 1 (b )  depicts a 
summary of the flow properties for humps of various length and height scales. It is 
believed that by means of the classification (a)-(c) the present paper provides the 
characteristics of the flow past any hump whose relative length scale 1 lies in the 
range Re-2 < 1 < O(1). We note in passing that, for all the categories (a)-(c) studied 
in $9 2-4 below, the scalings and character of the different regions describing the flow 
fields can all be derived by the order-of-magnitude arguments put forward earlier in 
this introduction. Further comparisons of the three cases (a)-(c) addressed here and 
consideration of their interrelations are given also in 0 4. Finally, $ 5 presents a further 
discussion and summary. 

In the following the Reynolds number is defined by 

Re = UzL*/v* ,  (1.1) 

where v* is the kinematic viscosity of the fluid, and v will denote the fluid velocity 
(non-dimensionalized against U z )  in the y direction. The flow along the smooth 
surface approaching the hump may be taken to have the local boundary-layer form, 
to leading order, 

sufficiently far ahead of the hump if the hump surrounds the origin x = y = 0 (figure 
l a ) .  Here Y is the classical boundary-layer co-ordinate, so that y = Re-*Y, and the 
boundary-layer profile U,( Y )  has the properties 

u = U,( Y )  + O(z), v = O(Re-*), p = O(x),  (1.2) 

Y + m 7 1  (1.3) 
U,( Y )  -+ 1 + O(exp) as 

U,(Y) - hY+&h,Y2 as Y+O, 
where 'the given constant h > 0 is the local O( 1) scaled skin friction of the oncoming 
boundary layer. Also the constant A, is equal to the local externally produced pressure 
gradient dp /dx  driving the boundary layer in the absence of the hump. An appropriate 
constant has been added to the pressure to ensure (1.2). In addition we would empha- 
size our concern here with a rational theory for laminar flow, despite its perhaps 
limited relevance to real situations. By contrast, turbulence models of (e.g.) wind flow 
over low hills have been studied by Jackson & Hunt (1975), Counihan, Hunt & 
Jackson (1974) and Sykes (1981). Again, related studies of the effects of three- 
dimensionality (Jackson 1973; Smith, Sykes & Brighton 1977; Brighton 1977; Sykes 
1980) and of stratification (Sykes 1978) in the flow past humps in boundary layers 
have also been made. 
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2. The flow past a short hump 
1, for 

the flow past a hump of horizontal scale O(Re-4) and vertical scale O(Re-4) on the flat 
plate. Thus the no-slip condition is required on the surface 

Our task here is to solve the Navier-Stokes equations formally, when Re 

y = RRe-8 F(Z) ,  (2.1) 

where x = Re-4Z. The dimensionless height factor here can be taken to be O( 1)  as 
far as any expansion in terms of the Reynolds number is concerned and for con- 
venience the hump shape P(X), generally of O( 1)  for 2 of O( 1) ,  is assumed to have finite 
cross-sectional area, so that 

00 

fo = j P(Z)dX < co. (2.2) 

The main reasons for choosing to concentrate on this particular size of short hump 
are, first, the importance of the interactions produced by having the hump’s length 
comparable with the oncoming boundary-layer thickness O(Re-4) and, second, the 
fact that the height of the hump is just sufficient to provoke a nonlinear response in 
the local flow including the possibility of separation: see 3 2.3 below. Again, the choice 
(2.1) is not quite as restrictive as it may appear at  first sight, as will be explained in 
$5 4 , 5  below. A diagram representing the asymptotic structure of the main flow regions 
needed for a complete rational analysis of the present case (2.1) is given in figure 2. As 
mentioned in $1  there are two distinct streamwise length scales: that of the short 
hump itself, x = O(Re-4); and the much longer triple-deck scale, x = O(Re-8). On the 
triple-deck scale three regions or decks are produced in the transverse direction: the 
lower deck 0, the main deck @ and the upper deck 0, with heights O(Re-i) ,  O(l2e-i) 
and O(Re-B) respectively. On the shorter scale of the hump the two major new regions 
are: the mid-region @) of the classical boundary-layer height O(Re-t), and the wall 
region @J of height O(Re-%) comparable with the height of the hump (see (2.1)). 
Lastly, again on the streamwise length scale of the hump there is a rather minor region 
@ lying between @) and @) and linking the upstream and downstream portions of the 
lower deck; @ can largely be ignored, however. 

Because of all the disparate length scales involved in the flow over the short hump 
our discussion will be split into ordered sub-sections below. Thus 3 2.1 will deal with 
the interactions arising on the triple-deck length scale, followed by 32.2 where the 
flow on the hump’s length scale will be examined. Then 332.3,2.4 will describe the flow 
properties near and in the various wakes of the hump respectively. It is assumed of 
course that the motion must resume the boundary-layer form (1.2) sufficiently far 
from the hump. 

2.1. The triple deck 
The flow properties here are basically the same as in all triple-deck problems (see 
Stewartson (1974), Messiter (1979)) except that the smallness of the disturbance (2.1) 
leads to a linear rather than a nonlinear response in the flow field, on the O(Re-B) 
length scale involved. Smith’s (1973) work gives the order of magnitude and the form 
of this linear respmse for a wide range of small humps, and for our particular case 
(2.1) the following expansions are i-nplied. 

-ca 
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FIGURE 2. Diagrammatical sketch of (a) the scales, ( b )  typical velocity profiles of‘ the perturba- 
tion velocities in the asymptotic regions 0-8 of flow over the short hump studied in 3 2. Note 
that in the wall region over the hump the perturbation is relative to the displaced velocity 
profile U,( Y - hF)  but in the upper regions it is relative to U,( Y ) .  

In the lower deck, 0: 
(u,  v ,p )  = (Re-BhZ + Re-4 x $h,22,0, Re-Bh,X) 

+ Re-Q(Re-gO, Re-gv’, Re-iP) + . .. , ( 2 . 3 ~ )  
where y = Re-QZ. 
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I n  the main deck, @ : 

( u , v , p )  = (U,(Y), 0, Re-ih,X)+ Re-B(Re-gU,, Re-aq, Re-iP)+ ..., (2.3b) 

where y = Re-4 Y .  
Here x = Re-QX defines the triple-deck co-ordinate X ,  while the Re-4 factor in 

(2.3a,  6 )  is displayed to emphasize the role played by the cross-sectional area (cc Re-4 
from (2.1)) of the hump relative to the characteristic cross-sectional area of the lower 
deck (see also (2.5s) and $4 below). Substitution of (2.36) into the Navier-Stokes 
equations leads to the familiar forms 

u, = A(X) U i (  Y), v, = - A ’ ( X )  U,( Y ) ,  F = P ( X ) ,  (2.4) 

representing to leading order a simple displacement of the oncoming boundary-layer 
profile U,( Y) with the induced pressure remaining constant across the boundary 
layer. One relationship between the unknown pressure P and displacement - 2 is 
obtained from the potential flow properties holding in the upper deck @ outside the 
boundary layer (Smith 1973; Stewartson 1974) : 

77 ‘f - w  x-c 
- 
P ( X ) = - -  - ( 2 . 5 ~ )  

The second relationship to fix i” and 2 stems from the lower-deck flow, for which 
( 2 . 3 ~ )  yields the linearized boundary-layer equations 

BX+VZ = 0,  h z c x + h v  = -P’(X)+Vzz. (2.5b) 

These are to  be solved in conjunction with the pressure-displacement relation (2.5a) 
and the conditions 

( D , V , P , B ) - + ( O , O , O , O )  as X++oo,  ( 2 . 5 ~ )  

B N h B ( X )  as Z+oo, (2 .5d)  

for matching horizontally with the undisturbed boundary-layer form far upstream 
and far downstream and vertically with the displaced main deck solution (2.4). The 
final condition on (2.5b) is the no slip condition 

0 = -Po S ( X )  a t  Z = 0, (2.5e) 

obtained by Taylor series expansion and by recognizing that the effect of the short 
hump (2.1) appears as a delta function on the longer triple-deck scale (Smith 1973) 
representing an effective hump of total cross-section Fo Re-6, the same in the lower- 
deck co-ordinates ( X , Z )  as in the more local co-ordinates (?, y )  of the mid-region 
above. The constant Fo, incidentally, is a number depending nonlinearly on rrf, in 
general and is fixed by the shorter-scale problem (2.10a-d) below by means of its 
asymptote (2 .13~-c)  (see also $4)) although in the special case where is also small 
F, N af0 as is noted in § 2.4 below. 

The solution of ( 2 . 5 ~ - e )  is obtainable from a Fourier transform and is given by 
Smith (1973). Its  main interest for the concern of this section lies in the behaviour 
implied for X -+ 0 since that provides the matching conditions for the motion on the 
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0 1 2 3 1) 

FIGURE 3. Similarity form of the velocity deficit profile in the wall layer downstream of a short 
hump (the local far-wake, in (2.130)) or at the start of the downstream lower deck (the global 
near-wake, in ( 2 . 6 d ) ) .  

shorter horizontal scale near the hump, i.e. for ??+ f GO. The major properties then are 
those of the displacement, pressure and surface shear stress 

as X - t O - ,  ( 2 . 6 ~ )  

as X-+O+, (2.63) 

1 
I 

2 ( X ) / F 0  - a,h%+2a1hQIXlf+ ... , 

(a~/az),=,/F, - Otln IXl), 
F ( X ) / F o w  b,ht+ ... , 

B ( X ) / F ,  N ~,h%+a,h*X*+ ... , 
P ( X ) / F o  - b-,hQX-f+b,A*+ ... , 
(a?7/aZ),=,/Fo - c-,h*X-+ + O(1n X ) ,  

where 
a, = - 3 ~ ~ 0 s  (&7)/23 = - 0.8106, a, = 3~+I'($)/2n = 0.5020 ... , 

b-, = 4 / r ( + )  = - o m % . . .  , b, = 3~3 /2% = 0.467 3 . . . ,  
c - ~  = -Ai(O)/I'(g) = -0.2622... , 

from Smith (1973) (see, for example, his figure 4) and Brighton (1977). Here 
K = ( - 3 Ai' (0))a = 0.8272 ... and Ai is Airy's function. It is found further that the 
perturbation velocity field D leaves a finite non-zero velocity profile over the top of 
the hump, 

ao(Z)  = B ( 0 , Z )  a t  X = 0 with Z fixed (0 < 2 < a), 
where 

in line with the non-zero value in ( 2 . 6 ~ )  of the displacement - A  there, but there is 
a singular behaviour a t  2 = 0 + when 1x1 -+ 0, as in all triple-deck or boundary-layer 
motions incorporating a discontinuity in the wall conditions. Thus in the wake of the 
obstacle the velocity near the wall is much larger than in ( 2 . 6 ~ )  and develops the 
similarity form, shown in figure 3, 

D ( X , Z )  N -hF,X-lG(v) as X+O+ with Z = O ( X f ) ,  (2 .6d)  

U,(Z) = O(Z) as Z + O +  ] (2.6c) 
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where 7 = Z h ) / X i  and the profile G(7) is given by 

e-7'/ l*Kg(y3/18).  (2 .6e )  

The term 'wake' just above refers to the near wake (X -+ 0 + ) as far as the triple-deck 
interaction is concerned and it therefore describes the far wake on the shorter length 
scale (Z = O( 1)) of the hump itself. 

The behaviours obtained in ( 2 . 6 ~ - e )  from the flow response for the long triple-deck 
length scale now enable us to attend immediately to the flow response on that shorter 
length scale. 

2.2. The  more local regions @, 0, @ 
I n  the mid-region @ Z and Y are the relevant O(1) co-ordinates and the appropriate 
expansions, implied by the triple-deck behaviours above, are 

(2 .7 )  (u ,v ,p )  = ( U , ( Y ) , O , O ) + R ~ - ~ ~ ( ~ ~ ~ P ~ ~ " , U ; ~ ( Y ) , O , O ) + R ~ - - S ( U , , ~ , P , ) +  ... . 
The dominant perturbation of O(Re-A) in u here merges with that in (2 .3b ) ,  from 
(2 .4 ) ,  ( 2 . 6 a ) ,  and indeed it is just the continuation of the triple-deck solution. I ts  
independence of X stems from the lack of a vertical velocity of the same magnitude 
in the mid-region which in turn is due to the small efflux from the wall region under- 
neath. The O( Re-i'i) contribution therefore represents an eigensolution which depends 
on the entire long scale response of the triple-deck studied in $2.1  and whose size is 
greater than that of the main local contribution of order Re-i in (2 .7 ) .  The smaller 
local contribution is then controlled by the linear equations 

resulting from substitution of (2 .7 )  into the Navier-Stokes equations, by matching 
constraints upstream, downstream and as Y --f 00, and by the value of the efflux 
&(Z, 0 + ) or the wall pressure P2(X, 0 + ) specified by the solution of the wall region 
flow beneath. I n  particular the upper deck @ demands that the solution of (2 .8 )  
should tend to zero as Y-tm. We note that a Fourier transform of ( 2 . 8 )  leads to 
Rayleigh's stability equation with zero wave speed and that Lighthill (1957)  made an 
extensive study of ( 2 . 8 )  and its three-dimensional analogue. 

The final major zone of flow is the wall region @ close to the hump. For the solution 
in the intermediate zone @ wherein 2 is O ( 1 )  again merely requires replacing the 
term involving U i ( Y )  in ( 2 . 8 )  by the profile Re-iz40,,(Z) defined in (2 .6c ) ,  whilst 
setting Y = O +  in the O(Re- f )  terms of (2 .8 ) .  So the major contribution in zone @ is 
again the triple-deck one forced through ( 2 . 6 ~ )  and there is as yet no interplay 
between the local effects and the larger more global effects from the triple deck. Then, 
in the wall region where X and z are the appropriate co-ordinates, with y = R e - b ,  
the solution expands in the form 

(u, v , p )  = ( R e - h ,  Re-iv", Re-") + . . . (2 .9 )  

as implied by the triple-deck behaviour ( 2 . 6 d )  combined with the lower-deck develop- 
ment in ( 2 . 3 a )  or, alternatively, by the behaviour of the solutions of (2 .8 )  as Y+O+ 
combined with the form of zone @. The flow to lowest order in the wall region there- 
fore brings in the nonlinear boundary-layer equations 

c2+fiz=o, .il.ii,+v".ii, = -pZ+.iiBz, $, = 0 ( 2 . 1 0 ~ )  



134 F .  T .  Smith, P.  W .  M .  Brighton, P. 8. Jackson and J .  C. R. Hunt 

with the boundary conditions of no slip a t  the surface (2.1) and matching upstream 
and vertically far from the hump: 

(2.10b) 

(2.10c) 

(2.10d) 

The outer boundary condition (2.10d) on the present short scale should be contrasted 
with that operative on the longer triple-deck scale, e.g. ( 2 . 5 d ) .  There the horizontal 
velocity is matched to the displacement solution of the main deck; that non-zero 
displacement then causes the potential flow in the upper deck which sets up the 
pressure gradient ( 2 . 5 ~ ) ;  and the latter is precisely the right size of pressure gradient 
required to drive the lower-deck flow which produced the non-zero displacement in 
the first place. Here, on the other hand, condition (2.lOd) means effectively that the 
leading-order displacement is forced to be zero. Hence the major pressure distribution 
@(%) has to  be determined as part of the wall region solution alone, separately from 
and in advance of the flow solution outside. The constraint (2.10d) is forced by the 
elliptic nature of the mid-region flow in (2.7)) (2.8) because, as only an efflux of order 
Re-* is consistent with the dimensions of the wall layer, the mid-region equation (2.8) 
restricts the associated local horizontal velocity to the same order. Alternatively the 
constraint (2.10d) can be regarded as a natural consequence of the earlier triple-deck 
properties, as $ 4  below shows. Again, the whole flow structure on the 5 scale has much 
in common with flows in certain constricted pipes and channels where the same final 
problem (2 .10~-d)  is met (Smith 1976a, b) .  

2.3. Solutions near the hump 
The crux of the matter now is the solution for the wall region problem (2.10a-d), 
therefore. Fortunately solutions for small and order-one values of B can be taken 
from Smith's ( 1 9 7 6 ~ )  b )  analysis and calculations: effectively he has h = 4, besides 
the obvious notational changes and application of Prandtl's transposition theorem. 
The main comments and points of interest we would note here are the following, taken 
from Smith (1976a, b )  and also, in linear cases, from Hunt (1971) who derived a 
linearized form of ( 2 . 1 0 ~ 4 ) .  First, the pressure distribution is unknown and the 
displacement known (and zero) in (2 .10~-d) ,  in contrast with the situation arising in 
classical boundary-layer theory. Secondly, there is no significant upstream influence 
a t  all in the sense that, if F(E) = 0 for X < 0, say, then the solution is the undisturbed 
boundary-layer form C - h z  = V" = @ = 0 for X < 0. The only upstream influence in 
the entire flow field is merely of a linear kind, first on the long triple-deck length scale 
(8 2.1) and then on the short hump length scale, due to the elliptic natures of the upper 
deck and of the mid-region respectively. Thirdly, numerical solutions for the hump 

F(2)  = X: exp ( - 9 / 3 2 )  H(X) ,  (2.11) 

where H ( x )  is the Heaviside step function, are presented by Smith ( 1 9 7 6 ~ )  for various 
values of II including negative ones which correspond to  a depression. The reader is 
referred to figures 5-7 of the last-named paper for graphs of the surface shear stresses, 
the pressures and a plot of the streamlines within a separation bubble on the leeward 
slope of a hump. This brings us to  the fourth point of interest, which is that any 
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FIGURE 4. Linearized solutions (f7 small) for flow over a short ‘Witch of Agnesi’ hump (82):  
( a )  Surface shear stress perturbation, 7 &(z=iTF,  where A = U k ( 0 ) .  ( b )  Pressure distribution. 
( c )  Hump shape. 

separation in these flows is a regular phenomenon with no breakdown of the boundary- 
layer equations such as occurs in classical Prandtl boundary-layer theory- the reason 
is covered by our first comment above. A fifth point is the occurrence of very large 
increases in the surface shear stress upstream of the peak and the quite slow return 
to the unperturbed flow conditions downstream (see also $2.4 below). As our sixth 
remark we note that the linearized solutions of Smith (1976b)) Hunt (1971), Brighton 
(1977) for small I? anticipate well the nonlinear forms of Smith (1976a) when is 
not too large. I n  particular we present in figure 4 the linearized solution for the case 
of the Witch of Agnesi, 

i 

F ( 5 )  = 
(1 +XZ)’ 

(2.12) 

in order to compare the present typipal flow properties with those of the flow past the 
much larger hump studied in the next section and the intermediate size studied in $ 4. 
Note that the numerical solutions of Smith ( 1 9 7 6 ~ )  for our flow can be supplemented 
by it rescaling implicit in his non-dimensionalization. Thus if we know the solution 
for a given hump in (2.1071) then, when the hump’s length is stretched by any O( 1) 
length factor q,  say, but with its height stretched by the factor qf, the flow solution 
is unchanged in  essence: we simply multiply G ,  v“ ,@,  Z ,  z by qf,  q-f, q*, q ,  q* respectively. 
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Hence the size of the surface shear stress remains the same. Finally, we note in passing 
that the case when B is large is the subject of a recent study (Smith & Daniels 1981) 
which shows that the length of the separation bubble then is enormous, as are the 
induced pressures and surface shear stresses, relative to the scalings contained in (2.9). 
This last study also includes the removal of Goldstein's (1948) singularity at a classical 
boundary-layer separation in contrast with the almost certain impossibility of 
removal, or rather of physically meaningful removal, in larger-scale flows (Stewartson 
1970). There is some qualitative similarity at least between Smith & Daniels's theoreti- 
cal predictions and the experimental findings of Hall (1968), e.g. in his figure 43, of 
laminar separating regions extending 50 heights downwind of a cylinder on the 
surface. 

2.4. The various wake properties 
Various processes govern the flow behaviour in the wake of the hump and their inter- 
actions are not as simple as might be supposed at  first sight. First of course we have 
the 'locally far wake' of the local response of (2.10a-d), i.e. the far wake (5-t + co) on 
the short 5 scale of $52.2-2.3 but still the 'globally near wake' (0 < X < 1)  on the 
longer X scale of $2.1. If the flow of (2 .10~-d)  returns to its original form as x+m,  
which is the suggestion of all the solutions for 

ii N hx+ii'(Z,x) as 5-t  +a, ( 2 . 1 3 ~ )  

where, on substitution into (2.10a, b, d )  and integration, the velocity deficit -ii' 
satisfies 

small, finite or large, then 

(2.13 b )  

This result (cf. (2.15) below) expressing conservation of the integral of the moment of 
momentum deficit across the wake was also found by Hunt  (1971) for the linearized 
case B < 1, which in fact gives (2.13b) directly. Also 

~'(5, Z) = -A$" C1G(7) ,  ( 2 . 1 3 ~ )  

where G(7)  is defined in (2.6e)' 7 = xhf/ZB and the constant Fo depends in general on 
the whole numerical solution of (2.10a-d), as a remark in $2.1 indicated, although 
for small Fa = Efo to leading order. The identity of ( 2 . 1 3 ~ )  and (2 .6d)  therefore 
fulfils the matching from the short scale of 5 to the long scale of X, and the locally far 
wake of (2 .13~-c)  is indeed the same as the globally near wake of ( 2 . 6 ~ - d ) .  The 
velocity deficit profile is illustrated in figure 3 and is quite similar to that in a con- 
ventional wake away from any wall. Also from (2 .13~-c)  it may be verified that the 
solution in the mid-region @ continues into the solution of the main deck 0, as 
5+ i: co in @ and X k  0 A in 0, since the wake entrainment implied by (2 .13~-c)  is 
given by 

lim v"(X,x)  = #b-,h)Fo5-~. (2.13a) 
2'00 

Here b-, is given in $2.1 and (2.13d) prescribes the value of V,(Z,  O f  ) for zone @ as 
5+oo, with V,(5,0+) 4 5-5 as 5+ -oo. Hence we find from (2.8) that 

a,AQrxfF0 U&( Y )  as X+ +a, ( 2 . 1 4 ~ )  

(2.14b) 
U2(% Y )  { 2a,h4,- xl fFoUi(Y)  as ~ + - c o ,  

providing consistency with U, in (2.4), using (2.6a, b )  for A(X). 
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FIQURE 5. Similarity forms of the velocity deficit in the lower deck far upstream of, and in the 
globally far wake of, the short hump of $2.  The same forms also apply far upstream and down- 
stream of the humps considered in $93, 4, however (see the texts of $93, 4). 

The local wake emerging from the nonlinear response of (2 .10a-d )  i.e. the wake for 
X of order unity with its locally far-wake form in (2 .13a-c) ,  does not give thenature 
of the complete wake flow, however. Indeed, as far as the more global length scale of 
the triple deck is concerned, the locally far wake (2.13a-c) is only the start of a new 
wake process. For the entire motion in 52.1 on the triple-deck length scale is itself 
the global wake of the hump, for X > 0, commencing from the globally near wake in 
(2.6b-d).  During the global triple-deck wake X > 0 a new balance comes into opera- 
tion, with the pressure force and the displacement being interrelated through the 
external potential flow in the upper deck outside the original boundary layer, whereas 
earlier during the local wake the corresponding displacement is too small to influence 
the pressure variation. The solution for the global wake is that of $2 .1 ,  details of 
which are given by Smith (1973) (see, for example, his figure 4). The integral condition 
(2 .13b)  governing the locally far or the globally near wake now becomes invalid as the 
global wake develops and there seems to be no simple equivalent condition replacing 
it for the entire global wake. I n  fact the integral in (2 .13b)  becomes divergent during 
the global wake because of (2 .3a ) ,  ( 2 . 5 d )  and the corresponding result is now 

(2 .15)  

relating the moment of momentum deficit integral to the displacement, for the entire 
wake of length O(Re-8). Only as X + O +  is the displacement effect - B ( X )  in (2 .15)  
sufficiently small relative to the perturbation velocity that (2.13b) can hold. One of 
the major effects of the new, global, wake interaction with the external Aow properties 



138 F .  T .  Smith, P. W .  M .  Brighton, P .  S. Jackson and J .  C .  R. Hunt 

is an increasing of the rate of decay of the wake properties compared with the forms 
(2 .6b-d) ,  i.e. ( 2 . 1 3 ~ - c ) ,  holding for X < 1. Thus in particular in the global far wake 
as X -+ 00 or in the global far upstream response as X -+ - 00 the perturbation develops 
the forms (Smith 1973; Jackson 1973) 

U A - % I x I - ~ F ~ G ; ( v ) ,  F(x) T,I = Z A + / ~ X ~ + ,  ( 2 . 1 6 ~ )  

since there the pressure distribution of ( 2 . 5 a )  takes the form associated with a poten- 
tial dipole a t  the origin. From (2 .5b-d)  the functions G ,  satisfy 

(2.16 b )  

( 2 . 1 6 ~ )  

The solutions are shown in figure 5 .  Upstream the adverse pressure gradient produces 
a velocity deficit throughout the boundary layer, whereas downstream the favourable 
pressure gradient now accelerates the slow-moving fluid near the wall (Smith 1973, 
equation (4 .8 ) )  although away from the wall there is again a velocity deficit. These 
properties contrast sharply with those of the locally far wake, of (2 .13~-c )  and figure 3, 
mainly because of the greater importance of the displacement effect here which is 
responsible inter alia for the greatly increased decay ( 0 ~ x 3 ,  X-2) of the velocity and 
pressure fields compared with those ( o c X - ~ ,  X-3) holding earlier in the locally far 
wake. 

The whole asymptotic structure set out in figure 2 should be self-consistent and the 
above developments form a basis for a complete rational description of the high- 
Reynolds-number flow past the hump of (2 .1 ) .  Next in $ 3  we discuss the flow due to 
a long hump on the otherwise smooth surface. Then in $ 4  the flow features due to 
both the short and the long humps of this and the next sections are re-examined in the 
context of triple-deck theory. 

3. The flow past a very long hump 
I n  contrast with the study in $ 2  the present section will concentrate on the flow 

response due to the presence of a long hump of horizontal length O(Re-i'i) and vertical 
height O(Re-4) on the plate, for reasons given in the introduction. Thus the wall has 
the form 

say, with I? of 0(1), with x = Re-i%D defining B and F defined as in 92. For such a 
hump the number of distinct regions governing the flow response is a t  least three but 
is probably more if, as seems likely in general, separation occurs. Let us develop the 
solution for attached flow first (figure 6) therefore before addressing briefly the more 
general case of separated flow. 

With the attached flow assumption, the first distinct region of motion on the hori- 
zontal scale D = O(1) is an outer potential flow zone of vertical scale O(Re-&), 
within which the uniform stream u = 1 ,  u = p = 0 suffers an O(Re-4) perturbation 
in view of the characteristic slope or aspect ratio Re-$ of the hump. So in y is 
O(Re-l'o), y = Re-&j say, and 

(3 .2 )  

y = ARe-&F(B) ,  (3.1) 

(u, u , p )  = ( ~ , o , o )  + Re-i (G,, z2, j~ + . . . , 
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FIGURE 6. Definition sketch of the asymptotic regions a-B for the analysis of the boundary- 
layer flow over the long hump studied in $ 3 .  Attached flow is assumed (see $3) .  

and on substitution into the Navier-Stokes equations we obtain the linearized 
inviscid potential flow equations for Uz, G2, p 2 .  Then in the second zone B, the main 
body of the boundary layer, the representation of the flow field is 

(3.3) 

as implied by (3.2) for the pressure and vertical velocity perturbations together with 
the continuity equation which fixes the order of the horizontal velocity perturbation 
here. We observe however that the effect on the oncoming boundary-layer profile 
U’( Y )  is really a nonlinear one, as one would expect from the O(Re-4) vertical scale 
of both the hump (3.1) and the boundary layer, although the nonlinearity appears 
only in the guise of a complete vertical displacement of the oncoming profile since, 
in (3.3), 

The expectation of such an inviscid displacement effect on the motion over the hump 
(which is now given by P = 0)  is verified by substitution of (3.3) into the Navier- 
Stokes equations, yielding the results 

(u, v , p )  = (U,( p), 0,O) + (Re-1’62, Re-&, Re-+@) + . .. 

P = Y - B P ( 2 ) .  (3.4) 

@(a,?) =BF’(&) U,(p) and 9 = @(&), (3.5) 

similar to those of Smith (1973, $7) .  Here (3.5) satisfies not only the continuity and 
momentum equations to  leading order but also the typical inviscid constraint of 
tangential flow near the wall, P -+ 0 + , since U,( 9 )  + 0 + there. This last constraint 
relies heavily on the assumption made of an attached flow description of course. 
Given the solution (3.5) for the inviscid region we may now return to the outer 
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potential flow region m, for the value of the efflux a(%, CO) from region supplies one 
of the boundary conditions on the outer potential flow, namely the equality of 
E2(2, 0 + ) and @(a, cn) or, upon differentiation, 

- al,,/ag(2,0 + ) = do(&, oo)/d2. ( 3 4  

Use of ( 3 . 5 ) ,  ( 3 . 6 ) ,  together with a boundedness condition in the far field and merging 
of the pressure between regions and m, therefore gives the relation 

( 3 . 7 ~ )  

from the outer potential flow. Hence ( 3 . 7 a )  directly fixes the main pressure variation 
induced by the given hump shape ( 3 . 1 ) ,  while ( 3 . 3 ) - ( 3 . 5 )  directly fix the main dis- 
placement of the oncoming boundary layer. The displacement is simply equal to the 
hump shape itself to leading order, although higher-order effects in ( 3 . 3 )  bring in a 
relatively small unknown correction to the displacement. 

The pressure force of ( 3 . 7 a )  has an important effect on the slowly moving fluid near 
the surface of the hump, in the final distinct zone m, a viscous wall layer. This layer 
adjacent to the surface is of thickness O(Re-%)  from an order-of-magnitude argument 
( §  I). In  i t  the flow field expands in the form 

(u ,v ,p )  = (Re-i@, Re-?i iBF’(2)  8+ R e - i % t  R e - @ ) +  ..., 
with y = Re-iI?F($)+Re-%& (or 
the flow response in layer 
being the classical boundary-layer equations 

= Re-iLo&) where 2 is of order unity. Therefore 
is a nonlinear phenomenon, the governing equations 

Og+@ = 0 ,  ( 3 . 7 b )  

where the result a@/a& = 0 for the vertical momentum balance and the consequent 
matching of the pressure with that in zoneBhave been applied. The boundary 
conditions on ( 3 . 7 b )  are ~ ~ 

A 

U = V = O  a t  Z=O, ( 3 . 7 c )  

o+ A& as &+-a, ( 3 . 7 d )  

a8 A 

-+A as Z+m, 
a2 

( 3 . 7 e )  

for no slip a t  the wall ( 3 . 7 ) ,  for matching upstream to the locally uniform shear of the 
oncoming boundary-layer form and for matching vertically with the solution ( 3 . 3 )  in 
zone A. Since the pressure force driving the wall-layer flow of ( 3 . 7 b )  is known in 
advance from ( 3 . 7 ~ ~ )  the central viscous problem, (3 .7a-e) ,  is very much like that 
occurring in classical Prandtl boundary-layer theory. Indeed it is only the matching 
constraints ( 3 . 7 d ,  e )  that offer the main possibility of a difference from a classical 
approach applied to the flow past the thin body (3.1). These matching constraints 
reflect the property that the viscous wall region is buried well inside the displaced 
original boundary layer because the hump, although relatively long, is nevertheless 
an abrupt disturbance when viewed on the typical O( 1) horizontal scale over which 
the original boundary-layer motion is developing. So the viscous region is influenced 
mostly by the local uniform shear of the displaced original velocity profile near the 
wall. There is little doubt that a classical approach would reproduce our problem 
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(3.7a-e) in a limiting sense, with the relatively abrupt thin disturbance (3 .1 ) ,  since 
the pressure force driving the viscous layer is induced by the inviscid potential thin- 
aerofoil solution for the flow past the hump, just as in the classical theory. In  the 
present situation, then, the pressure force is known a priori but the viscous-layer 
displacement, -A^(&) say, is an unknown, to be determined from the behaviour (from 

(3.7e’) 

developing from ( 3 . 7 e ) ;  this should be contrasted with the opposite extreme situation 
holding for the much smaller hump of $ 2  where instead the displacement can be 
prescribed and the pressure variation is the unknown to be determined by the viscous 
wall-layer motion. The link between these two opposite extremes is explained in $ 4  
below in fact, by means of triple-deck theory where in general both the driving pressure 
and the displacement of the viscous wall layer are unknowns. We note too that the 
displacement -,x(&) gives the first correction of relative order Re-i’i to the main 
known displacement f zF(0 )  of the inviscid region H. 

However, because of the quasi-classical nature of the present flow structure, our 
assumption of attached flow is vital. The description (3.7a-e) above almost certainly 
cannot cope with separating flow because with the pressure force known in advance, 
just as in classical boundary-layer theory, the Goldstein (1948) singulacity almost 
certainly arises a t  the onset of separation, is believed to be irremovable in any physic- 
ally meaningful way (Stewartson 1970) and thereby renders the whole assumed 
structure m-m illogical. The same inability to deal with separation arises in any 
classical theory of course but not in the theory of $ 2  above and of $ 4  below simply 
because there the wall pressure is an unknown in the viscous wall-layer flow. In  the 
present situation the question of whether the viscous problem of (3.7a-e) has an 
acceptable, i.e. attached, flow solution or not will be a matter of detailed numerical 
calculation usually, owing to the nonlinearity involved. Physically the separation 
singularity would seem most likely to occur in the adverse pressure gradient arising 
in the lee of a high enough hump but on the other hand one would expect attached 
flow to be possible for a restricted range of hump shapes F(O) which are not too high, 
too irregular or too steep. For instance, the attached flow solution is definitely possible 
when fz is asymptotically small, since then the solution of (3.7a-e) is obtainable 
analytically in the form of a small perturbation of the original boundary layer: 

(8 ,P ,~ ,A)=(h&,o ,o ,0)+tZ(81,~ , f j1 ,A^1)+ .... (3 .8 )  

This linearizes (3 .7b )  and a Fourier transform allows the solutions for the transforms 

to be found (as in Smith 1973) in the forms 

(3 .9a )  

(3 .9b )  

(3 .9c )  

Graphs of the distributions of pressure, wall shear stress perturbation and wall-layer 
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FIGURE 7. Linearized solutions (e small) for fiow oyer a long ‘Witch of Agnesi ’ hump ($3) : 
( a )  Surface shear stress, 9 f Ui[z=,. (b )  Displacement. (c) Pressure. ( d )  Hump shape. 

displacement are given in figure 7 ,  again for the case of the Witch of Agnesi 
F(8) = (1 + P - l a s i n  $ 2. Here the wall shear stress displays a peakon the upstream slope 
of the hump but followed by a reduction of comparable size in the region of adverse 
pressure gradient beyond the top of the hump. This would suggest the occurrence of 
the separation singularity there for large enough 8, as would the associated pattern 
of the displacement. Comparisons of this solution for the longer hump with those for 
the short hump of $ 2  are made later in the paper. 

Two final points on the features of the assumed attached flow may now be made. 
First, a re-scaling similar to that noted in $2 .3  can be used to generate an infinity of 
solutions from a given nonlinear solution of (3.7a-el;  it involves multiplying 0, 8, 
9, Â , 8, by q*, q-i, @, q*, qI q* respectively where q is any O( 1) length factor. Second, 
the upstream influence and the wake of the flow, i.e. the solutions of (3.7a-e) for 
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2+ 00 respectively, have just the same forms as in the triple-deck properties of 
52.4 above for the globally far wake. Thus the pressure distribution given by ( 3 . 7 ~ )  
takes a potential dipole form then and so the velocity profiles far upstream and in the 
far wake (&-+ T 00) develop the characteristics shown already in figure 5 .  Further 
details of these two points are given by Brighton (1977). 

If, as seems probable in general, the attached flow assumption made above proves 
incorrect, then the approach based on m-m as set out above also becomes incorrect 
of course. Any separation bubble or eddy is likely to have a height comparable with 
that of the hump and therefore cannot be described within the context of the thin 
wall l ayerm above. Instead it exerts a substantial influence, comparable with that of 
the hump itself, on the entire flow field. The flow structure is obviously more com- 
plicated once flow separation is present, then. Nevertheless the structure of such a 
separated motion is not necessarily far beyond the scope of present theoretical under- 
standing. For it is to be expected that the thin-aerofoil result ( 3 . 7 ~ )  for region still 
holds, but with the shape F ( x )  there supplemented by the unknown shape of the 
separated eddy to give an effective body shape (Fe(x)? say) unknown apriori. Similarly 
the inviscid region still has the displaced form of (3.3),  although with e ( x )  
replacing F ( x )  again. Then the viscous layer must stay attached to the wall up to 
separation and thereafter form the thin viscous boundary around the separated eddy 
or eddies which are presumed to be mainly inviscid. The self-consistent description 
of the local breakaway separation processhereis that of Sychev (1972) and Smith (1977) 
based on triple-deck theory. Again, although the question concerning the shape of the 
inviscid eddy is by no means completely settled owing to theoretical difficulties 
associated with reattachment, a possible candidate for a correct description of the 
separated flow field is the free-stream-line model of Kirchhoff (1869). This has been 
studied by Smith ( 1 9 7 9 ~ )  b )  and Smith & Duck (1980)) with regard to the large sepa- 
rated motions occurring in the flow past a bluff body placed in an external stream 
or in a pipe or channel, and yields good agreement with the reliable numerical 
evidence available. Some recent numerical work (Fornberg 1980) further supports the 
free-streamline approach of Smith ( 1 9 7 9 4  for the external flow case, at least as far 
as Fornberg’s work has been checked; the discrepancies suggested by his calculations 
a t  higher Reynolds numbers are believed to be illusory in the sense that no reliable 
checks a t  all (e.g. on grid sizes or on the approximated boundary conditions) are 
applied to the calculations then. Accordingly it is envisaged that the free-streamline 
approach allied to the triple-deck separation process might give a good account of our 
separated flow field and might even give the correct asymptotic structure replacing 
that presented above ((3.2)-(3.9)) for attached flow. Some further comments on the 
separated flow structure are made in the next sections. 

4. The triple-deck viewpoint of the hump problems 
Let us now reconsider flow past humps in the context of triple-deck theory. This 

alternative viewpoint (Smith 1973) is that the dominant features of the flow past a 
vast variety of humps can all be extracted from the nonlinear triple-deck problem; in 
particular we will verify the validity of that viewpoint for the cases of the short and 
long humps considered in 5$2,3.  
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The triple-deck problem is to solve the nonlinear lower deck equations and boundary 

Elx+& = 0) UU,+ vu, = - p ' ( X ) + U  zz, (4.1 a )  
U = V = 0 at 2 = H F ( X ) ,  (4.1 b )  

U N h ( Z + A ( X ) )  as Z + m ,  (4.1 c) 

(4 . ld )  

conditions 

i (U,V,P,A)+(AZ,O,O,O) as X - t  km, 

along with the pressure-displacement relation 

P ( X ) = - -  -. 
7T l Sm -a x-fl (4 . le)  

Here U ,  V ,  P represent the velocities and pressure scaled according to the triple-deck 
laws 

(4.2) (u, v,p)  = (Re-* U ,  Re-9 V ,  Re-aP(X)) 
to leading order. Also the hump has the form 

y = Re-QHF(X) (4.3) 

consistent with the lower-deck size, O(Re-4) horizontally and O(Re-Q) vertically, 
defined in $2.1, while H is of order unity formally. Thus (4.1 b)  is the no-slip condition 
at the surface and ( 4 . 1 ~ )  is the outer matching condition as in $2.1, where - A ( X )  is 
the scaled displacement of the main deck. 

At first sight the triple-deck case (4.3) seems a specialized one but its use enabled 
Smith (1973) to deduce some of the properties of both the short and long-scale hump 
flows of $2.3 above. The advantages of studying the triple-deck case can be put in a 
more powerful form as follows. 

With a view to comparing with $2, consider first the regime H < 1 but with a 
hump of short characteristic length O(H3) on the triple-deck scale X ,  so that 
F ( X ) + F ( @ X ) ,  say, in (4.3). Then the scaling X = H3Z, 2 = Hz are implied imme- 
diately together with the expansions 

( U ,  V ,  P ,  A )  = (HG, H-lv", H2@(Z), C + H 5 d ( Z ) )  + . . ., (4.4) 

where C is a constant to be determined. The ordering in powers of H here is chosen to 
ensure a viscous-inertial-pressure force balance and so substitution of (4.4) into 
(4.1 a-e) yields the local problem 

G, + GZ = 0, mi, + v"Gz = - @'(Z) + ii,,, 
.ii = v" = 0 a t  z = J'(Z), 

(4.5a) 

(4.5b) 

G - h ( z + O )  as z+w, (4.5c) 

G+hz as Z-+-m, (4.5d) 

provided C < H ,  which is justified below. Hence we obtain exactly the local viscous 
wall-layer-flow problem of $2.2, i.e. (2.lOa-d), with scaled out as referred to in 
$2.3. This determines the local pressure @(5) in particular and, unlike the original 
triple-deck case of (4.1) or the long hump case of $ 3 and (4.7)-(4.8) below, the pressure- 
displacement relation (4.1 e ) ,  which becomes 
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now, does not determine the local pressure field in the lower layer. Rather, the local 
pressure determines the relatively small O(H5)  displacement effect in the main part 
of the boundary layer (indicated by ( 4 . 4 ) )  due to  the viscous wall layer, a result in 
line with Hunt’s (1971) study. Fortunately, the triple-deck approach ( 4 . 1 ~ - e )  also 
yields the dominant flow properties in the other four main regions (figure 2 )  produced 
by the short hump in $ 2. For there regions 0-0 are of course the linearized version 
of (4 . la -e ) ,  which applies, to a point disturbance, on the X = O(1) scale when H is 
small and which can be reconciled with that in $2.1 by identifying H with Re-2’4 

formallyt since on the lower-deck scale the present cross-sectional area of the hump 
is of order H4 whereas that in $ 2 is of order Re-9. Likewise region @ is dominated by 
the eigenform of order Re-% in ( 2 . 7 )  which is simply the local form of the linearized 
triple-deck solution anyway. The linearized version shows moreover that C is of 
order H4.  Therefore in all regions and respects the major features of the flow solution 
for the shorter case of (2 .1 )  can be achieved in just one step from the triple-deck case. 

The same conclusion also applies to the longer case studied in $3.  Thus consider 
the regime H $ 1 but with a hump of large characteristic length O(H2) on the triple- 
deck scale x, so that F ( X )  +F(H-*X). Setting X = H*P and 2 = H F ( 2 )  + H i 2  then, 
we expand 

(4 .7 )  ( U ,  V ,  P, A )  = ( H i  8, H i F ’ ( 8 )  8 + H-i 9, H*fi(&), HA,(B) + HiA(&))  + . . . , 
from which we conclude that A,(&) = - F ( 2 )  and hence obtain the controlling equa- 
tions and boundary conditions 

u;+G = 0, uu,+ vu2 = --@’(&) + O&) ( 4 . 8 ~ )  

O = P = O  a t  Z = O ,  (4 .8b )  

O+A& as $- t -Oo,  ( 4 . 8 ~ )  

h h A  * A  

A 

A 

ON ~ ( 2 + A ( e ) )  as Z+W, ( 4 . 8 a )  

from substituting (4 .7 )  into ( 4 . 1 ~ - d ) .  Also ( 4 . l e )  becomes now 

(4 .8e )  

Therefore our problem ( 4 . 8 ~ - e )  is identical with that governing the flow response in 
$ 3 ,  i.e. ( 3 . 7 ~ ~ - e ) .  The other features of $ 3  can also be gleaned from the triple-deck 
problem in a like manner, H being identified with Re$ then. 

So each of the long and the short cases of the two previous sections can be accom- 
modated as a special or limiting case of the triple-deck one and is derivable from the 
latter in one step. Obviously the triple-deck problem unifies the main differences 
between $ 2  and $ 3  since, haying the pressure and displacement both unknown but 
interrelated, the triple deck can allow the feature of zero displacement with unknown 

H & Re-N for all N > 0 should be placed on H 
in (4 .4 ) ,  to preserve the complete ordering of the Reynolds-number expansions leading to 
(4.1a-e),  but ( 4 . 5 ~ - d )  verify the point that ( 4 . 1 ~ - e )  and ( 2 . 1 0 ~ 4 )  are related limits of the 
Navier-Stokes equations and indeed only the limitation 1 & H & R e - i  is required (figure l b )  
provided we concern ourselves with the zeroth-order solution everywhere. Similarly, for 5 2.3 
for example, the limitation on 2? for (2.12) and figure 4 can be slightly extended to 1 + 2? 

Re-&, while (4 .7)  can be extended to 1 < H + Re2 (figure l b )  as far as the dominant 
flow solution is concerned. 

t Strictly severe limitations including 1 



146 F. T. Smith, P. W .  M .  Brighton, P .  8. Jackson and J .  C. R. Hunt 

pressure to emerge for short humps a t  one extreme ($2)  and the feature of known 
pressure to emerge for very long humps a t  the other ( $  3). See also figure 8 below. 

5. Further discussion 
Certain points of further significance follow on immediately from those of the 

previous section. First we believe that derivations in $ 4  of the short- and long-scale 
flow problems from that of the triple-deck case do help to  explain the overwhelming 
importance of the triple-deck case and why so much attention has been focused on it. 
For instance the triple-deck problem (4.1 a-e) contains all the ingredientsnecessaryfor a 
full account of large-scale separated recirculating flows since such an account isexpected 
to emerge when H is large and upstream it would presumably involve the breakaway 
separation of Smith (1977) which is believed to apply to all such large separations 
(e.g. Smith 19790,). Linearized and/or numerical treatments of (4.1 a-e) for various 
values of H have been given by Smith (1973), Napolitano, Davis & Werle (1978) 
and Sykes (1978), by H. Herwig (private communications, 1979-80) for a depression 
where H < 0, by Dijkstra (1978) for the related problem of flow past a step, and are 
still under further investigation. The far upstream and downstream (far wake) forms 
of the flow are given by the behaviours in ( 2 . 1 6 ~ ~ - c )  incidentally. 

A second point is that the importance of the triple-deck solutions should not dis- 
guise the fact that if a complete account is required then more regions than those 
inherent in or stemming from the triple deck are required in general. Thus, in the 
short-hump case of $2,  the mid-region @, although dominated by the triple-deck 
eigenform in (2.7), is necessary nevertheless for a full description and appreciation to 
be gained of the local and global interactions. Only when the local and global 
approaches, essentially those of Hunt (1971) and Smith (1973), are combined as in 
$ 2  can a complete and apparently self-consistent account of the entire flow field be 
obtained. Indeed, the studies in $92, 4 are believed to resolve the differences of 
opinion between the two approaches, showing that each is certainly correct but only 
in an appropriately limited sense. 

Thirdly, for the purposes of completeness and comparison, we present the linearized 
solution (where H < I)  of the triple-deck problem (4.1 a-e). We choose the Witch of 
Agnesi again but in the form 

since the relative length scale factor q here cannot be factored out in the way referred 
to in $$2 ,3 .  The linearized solution for (5.1) with H < 1 follows from Smith’s (1973) 
Fourier transform solution and is presented in figure 8. In  fact it re-emphasizes some 
of the points made previously. For figure 8 shows that when q is small the triple-deck 
solution reproduces the linearized solution of figure 4 for the short hump of $ 2  and 
conversely when q is large the linearized solution of figure 7 for the longer hump, 
studied in $3,  is approached. The adjustment that takes place as q increases from 
O +  to 00, i.e. as the hump’s length scale 1 passes through the triple-deck stage of 
O(Re-%), is interesting physically. For when q is small (1  < R e d )  the downstream 
decrease in the shear stress occurs much later, and is much less intense relative to the 
peak value, than when q is large (I 9 Re-3). The pressure distributions are also quite 
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Upper deck 

Main deck 

different, with the adverse pressure gradient being milder and spread over a much 
greater relative distance when q is small. These differences show that when q is small, 
as in $ 2, the pressure gradient is not imposed externally but created by the interaction 
of the inflow into the wake with the incoming vorticity (as in $ 2  and Hunt 1971); 
whereas when Q is large as in $ 3  the pressure gradient is in effect imposed externally by 
the displacement due to the hump shape. The triple-deck solutions for all values of q 
in figure 8 explain inter alia the continuous adjustment from the first to the second 
form of pressure response and their interrelation. 

Fourthly, all the analyses of $ 9  2-4 apply in fact to a wider variety of hump sizes, 
by use of limiting processes such as those used in (4.4) and (4.7). Indeed, the findings 
of the present paper and those of Hunt (1971) and Smith (1973) can be summed up 
in a general description of the effects of a hump’s length and height scales (1 ,  h) in 
fixing the response of the oncoming boundary-layer flow and in particular the onset of 
separation. It proves advantageous to consider initially humps of length 1 and height 
O(1fRe-4). Now for a tiny hump with 1 = O(Re-P) the local governing equations remain 
the full Navier-Stokes equations (Smith 1973; Kiya & Arie 1975; Haussling 1979; 
see also Sobey 1977) since then h - 6Re-4 and 1 are comparable, while of course if 1 
is less than O(Re-2) inertialess flow properties may hold which can themselves yield 
a small though undramatic separation. Next, however, we can conclude that (4.4) 
describes the main flow features for all values of 1 greater than O(Re-3) and less than 
O(Re-Q), including the particular case 1 = O(Re-j) studied in $ 2 .  Then the stage 
1 = O(Re-%) produces the nonlinear triple-deck response (4.la-e), while for 1 greater 
than O(Re-Q) but no greater than O(1) we would expect Smith’s (1973, $ 7 )  simple 
displacement solution to emerge. By contrast, if the height is less than O(l*Re-$) for 
a given hump length 1 then the flow features are merely linearized versions of those 
just described. But if the height is greater than O(1fRe-4) then major difficulties can 
(but do not necessarily) arise. The case of $ 3  is the epitome of this last category a t  
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ill 2 

I ?=0.294 

Caption to figures 8 b and 8 c  on p. 149. 

least for the range where Z lies between O(Re-8) and O(1); for in that range the crucial 
height h is O(18) instead of O(l*Re-*). 

If the flow remains attached then little doubt surrounds the flow description; but 
if separation occurs the corresponding flow descriptions must take account of the 
implications of the triple-deck problem (4.1 a-e) for large-scale recirculating flows and 
these implications are still not entirely clear. Clearly, however, the occurrence of 
separation then does represent a gross change in the character of the fluid motion 
past the hump, including a recirculatory eddy or eddies of dimensions comparable 
with or even much larger than those of the hump itself. The other range, where 1 lies 
between O(Re-2) and O(Re-B), but with h greater than O(l*Re-t), is the subject of 
Smith & Daniels' (1981) study referred to in $2.3 .  It is noteworthy also that, for the 
flow over humps of length scale 1 in the range O(Re-2) < 1 < O(l) ,  the triple-deck 
scale 1 = O(Re-4) gives separation for the smallest size of the aspect ratio, 
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- X h - $  
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FIGURE 8. ( a )  The triple-deck structure for the intermediate size of hump considered in §§4,  5 .  
( b ) ,  ( c )  give the linearized solutions ( H  small) for the pressure P and the skin friction 7 s Ug(g=,, 
in the flow over the intermediate Witch of Agnesi, at the values of ij = A*q shown. ( d )  gives the 
corresponding hump shapes for each value of the shape factor p ( p  large or small corresponds to 
the results for long or short humps in figures 4 and 7 respectively). Note that ( 7 - A )  is slightly 
positive very far downstream. 

h/l = O(Re-*), while a t  the ends of the range only obstacles of finite aspect ratio, 
h/Z = O ( l ) ,  give separation, as demonstrated earlier in figure 1 ( b ) .  

Concerning the three other flow features listed in $1, viz. the velocity over the 
hump, the surface shear stress and the wake behaviour, there are also some general 
physical conclusions (ii)-(iv) below to be drawn from the analysis(see also figure 2). 

(ii) For all humps considered here, O(Re-2) < Z < 0(1), in the middle region of the 
flow (i.e. above the surface region but within the boundary layer) the horizontal 
velocity component decreases relative to its value a t  the same value of y upstream, 
i.e. the majority of the boundary layer slows down. This is because the dominant 
effect (a triple-deck one) is an upward displacement of the incident shear flow stream- 
lines by the hump as well as by the reduced velocity in the surface layer downstream 
of the hump. Over the short hump this negative displacement perturbation is 
O( - U z  Re-2z d U,/d Y ) .  By contrast the potential-flow-like increase in the velocity 
produced by flow over the hump and by the flow entrained into the near wake is just 
smaller and O( U z  Re-4). An interesting point is that the former perturbation decreases 
with height exponentially whereas the latter decreases algebraically (a y-4). So, for 
a given large value of Re, the latter effect may just possibly be the dominant one in 
practice over a not insignificant outer part of the boundary layer, if not elsewhere. In 
the upper region, the largest, outside the boundary layer the perturbation horizontal 
velocity over the hump always increases but the magnitude involved is less than that 
in the middle region for all ranges of hump length scale. The flow pattern in this 
region in all cases is the same as potential flow over a surface deformation, whose 
magnitude is determined by the local flow over the actual hump. For example, over 
short humps the vertical velocities induced by the hump are O(Re-*Uz) in the outer 
reaches of the boundary layer; so the horizontal velocities in the upper region are also 
O ( R e - i U z )  or O(Re- iUzh/Z) ,  i.e. less than that of uniform potential flow with 
velocity U z  over the hump. In  the lowest surface region it is more physically revealing 
to consider the ratio of local to upstream velocities a t  the same small displacement 
height y^* = (y*-h*P) above the disturbed surface. Then over the summit of the 
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hump there is always an increase in the velocity, a t  the same value of Q*. In par- 
ticular, over the short hump the near-surface velocity there increases by a, factor 
O(h*/S;) or O(Re ih / l ) ,  as compared with O ( h / l )  in inviscid fluid flow. Similarly on 
the downstream or lee side there is a decrease in the near-surface velocity by a factor 
of O(Redhl1). Over the long hump the proportional change in near-surface velocity is 
O(h*/Sz)  or O(Re*h/l) .  So the changes in the near-surface velocity due to surface- 
mounted humps are very much greater than the O ( h / l )  increases in the near-surface 
velocities in uniform inviscid fluid flow over humps. If in either case h - S, then 
separation may occur. 

(iii) The lower region results also show how the changes in surface shear stress 
vary with Z/L*, R e  and h/Z. 

(iv) The wake structure is essentially different for short and very long or inter- 
mediate humps (although $4 above can serve to unify all the cases). The former 
humps first produce a region of large velocity deficit O(Re-jU2) near the surface 
much greater than the perturbation in the upper part of the boundary layer, where it 
is of O(Re-i%) at most. Downstream of longer humps the horizontal velocity perturba- 
tion is of the same order in the lower and middle regions of the flow, for example being 
of O(Re-i'z) when 1 = O(Re-%), h = O(Re-Q), the intermediate triple-deck scale. 
Another important difference between flows past short and intermediate humps is 
that the velocity deficit decays with distance x* like (x*/Z*)-l and like (x*/l*)f 
respectively, over a distance O(l*). However, eventually in the former case when 
x* 9 E*Re* the same rapid x-+ decay sets in as for the longer hump. Again, an adjust- 
ment between the integral conditions (2.13b) and (2.15) takesplace, and it is found that 
sufficiently far downstream the surface velocity becomes very slightly positive before 
decaying to zero. 

In  terms of the dynamics the influence of the short hump does not penetrate 
strongly enough into the external stream to produce a significant pressure gradient 
by means of an inviscid interaction. Rather, the flow in the wall layer is determined 
locally by the diffusion and convection of the incident vorticity whose distribution is 
distorted directly by the presence of the hump. This is manifested in the parabolic 
nature of the central problem (2.10a-d) and its lack of upstream influence. The 
pressure gradient may be regarded as being induced by the interplay between the 
vertical velocities generated in the wall layer and the basic vorticity in the oncoming 
flow (since as z+oo in (2.10a) the principal balance is given by hfi-+-dfj/dE, as in 
Hunt (1971)). But on the longer triple-deck length scale the influence of the external 
stream does become important even for the short hump and it dominates the behaviour 
further upstream and downstream. Hence the wake in particular has the twofold 
nature described in $ 2.4, with the velocity deficit decaying only as 2-1 in the locally 
far wake (figure 3) but then decaying faster on the triple-deck length scale before 
finally decaying as X-8 in the globally far wake (figure 5 ) .  By contrast for the longer 
hump of $ 3 the physical mechanism of the flow response, if the flow can stay attached, 
is just that of conventional boundary-layer theory in which a prescribed pressure 
gradient, given by (3.7a),  drives the motion. Viscous stresses are confined to the thin 
wall layer because the length scale of the hump is still much less than the typical 
length over which the oncoming flow is developing. This mechanism is closely related 
to the calculational approach of Stratford (1954) and loosely to the turbulence 
modelling of Jackson & Hunt (1975), but it does not allow for the dramatic effects of 
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separation on this flow structure, as we have remarked previously. The intermediate 
size of hump ($4) )  that  of the triple deck, does not suffer the same limitation on the 
other hand because separation can be allowed. There the apparently distinct physical 
mechanisms controlling the shorter and longer humps of $$2,3 are interlinked, so that 
the distortion of the incident vorticity is controlled in the wall layer (or lower deck) 
not only by the local presence of the hump but also by the effect of the wall-layer 
displacement on the external flow. One viewpoint could be that therefore the triple- 
deck case of (4.1 a-e) is merely a very special one; but the alternative viewpoint ($4) 
is that therefore the triple-deck case includes the other two (Q$2,3) as special cases. 
There is little doubt however that the triple-deck case does hold the key to  the large- 
scale separated-flow properties holding for larger obstacles [e.g. when O(Re-#) 
< Z 6 O(1) but with h 9 13:  see figure 1 (b) ] .  

Treatments similar to those above are expected to be applicable to three-dimensional 
flows also. 

One of the practical reasons for analysing laminar flows over surface humps is to 
provide an exact calculation to guide the development of approximate calculations for 
turbulence-modelled flows. The analysis presented here confirms that for humps with 
low slopes (h* < l*),  if 8: is the thickness of the lower surface shear stress region and 
if h* < S*, then when I* < 8* (e.g. the short hump) the surface pressure 
p z  - p*(h*/Z*) Ug(Z*) Ug(S;), where U$(y*) = U z  U’( Y ) ,  and the near-surface 
perturbation velocity over the hump at  y* N 8; is u,* N (h*/Z*) V%(Z*). When Z* 9 S* 
(e.g. the intermediate and long humps) 

p: N p*(h*/Z*) u;(z*))” U: N (h*/Z*) Uz(Z*)2/U$(Sz), 
The latter estimate has been shown by Jackson & Hunt (1975) and Mason & Sykes 
(1979) to be reasonably accurate for turbulent air flow over hills with slopes as much 
as 9 .  

P. W.M.B. is grateful to the Science Research Council, and P.S. J. to  a Common- 
wealth Scholarship, for financial support. 

REFERENCES 

BRIGHTON, P. W. M. 1977 Ph.D. thesis, University of Cambridge. 
COUNIHAN, J. ,  HUNT, J.  C. R. & JACKSON, P. S. 1974 J. Fluid Mech. 64, 529. 
DIJKSTRA, D. 1978 Proc. 6th Int. Conf. on Numerical Methods in Fluid Dynamics, Tbilisi, 

U.S.S.R. 
FORNBERG, B. 1980 J .  Fluid Mech. 98, 819. 
GOLDSTEIN, S. 1948 Quart. J .  Mech. Appl. Math. 1, 43. 
HALL, D. J. 1968 Ph.D. thesis, University of Liverpool. 
HAUSSLING, H. 5. 1979 J .  Atmos. Sci. 34,  589. 
HUNT, J. C. R. 1971 J .  Fluid Mech. 49, 159. 
JACKSON, P. S. 1973 Ph.D. thesis, University of Cambridge. 
JACKSON, P. S. & HUNT, J.  C. R. 1975 Quart. J .  Roy. Met. SOC. 101, 929. 
KIRCHHOFF, G. 1869 J .  reine angew. Math. 70, 289. 
KIYA, M. & ARIE, M. 1975 J .  Fluid Mech. 69, 803. 
LIGHTHILL, M. J. 1957 J .  Fluid Mech. 3 ,  113. 
 SON, P. J. & SYKES, R. I. 1979 Quart. J .  Roy. Met. SOC. 105, 393. 
MESSITER, A. F. 1979 Proc. U.S. Appl. Mech. Congr. 1978, University of California, Los 

Angeles. 



152 

NAPOLITANO, M., DAVIS, R. T. & WERLE, M. J. 1978 A.I.A.A. 1 lth Fluid & Plasma Byn. 

SMITH, F. T. 1973 J .  Fluid Mech. 57, 803. 
SMITE, F. T. 1976a Quart. J .  Mech. Appl. Math. 29, 343. 
SMITH, F. T. 1976b Quart. J. Mech. Appl. Math. 29, 365. 
SMITH, F. T. 1977 Proc. Roy. SOC. A 356, 443. 
SMITH, F. T. 1979a J. Fluid Mech. 92, 171. 
SMITH, F. T. 1979b J .  Fluid Mech. 90, 725. 
SMITH, F. T. 1979c Lecture course on ‘Theory of Laminar Streaming Flows’, presented at 

C.I.S.M., Udine, Italy, October 1979; also to appear a.s review in J .  Inst. Math. Applic. 

F .  T .  Smith, P. W .  M .  Brighton, P. 8. Jackson and J .  C .  R. Hunt 

Conf., Seattle, no. 78-1133. 

(1981). 
SMITH, F. T. & DANIELS, P. G. 1981 J .  Fluid Mech. 110, 1. 
SMITH, F. T. & DUCK, P. W. 1980 J .  Fluid Mech. 98, 727. 
SMITH, F. T., SYKES, R. I. & BRICHTON, P. W. M. 1977 J .  Fluid Mech. 83, 163. 
SOBEY, I. J. 1977 J .  Fluid Mech. 83, 33. 
STEWARTSON, K. 1970 J .  Fluid Mech. 44, 347. 
STEWARTSON, K .  1974 Advs Appl. Mech. 14, 145. 
STRATFORD, B. S .  1954 Aero. Res. Counc. R. & M .  no. 3002. 
SYCHEV, V. V. 1972 Izv. Akad. Nauk S.S.S.R. Mekh.. Zhid. i Gaza, 3, 47. 
SYKES, R. I. 1978 Proc. Roy.  SOC. A 361, 225. 
SYICES, R. I. 1980 Proc. Roy. SOC. A 373, 311. 
SYKES, R. I. 1981 In preparation. 


